Популярное

Мифы о звукоизоляции



Как построить дом из пеноблоков



Как построить лестницы на садовом участке



Подбираем краску для ремонта



Каркасные дома из дерева


Главная » Математическое моделирование

1 2 3

Математическое моделирование лазерного ускорения протонов и поджига термоядерной мишени в системах

двойных лайнеров .

Самарский А.А.(1), Андреев А.А.(2), Захаров С.В.(3), Ильин Д.В.(4), Левковский А.А. (levkovsk@AL5889.spb.edu ) (4), Платонов К.Ю.(2),

Шерман В.Е.(4)

(1) Институт математического моделирования РАН. (2) Институт лазерной физики ВНЦ ГОИ им. С.И.Вавилова , (3) Троицкий институт инновационных и термоядерных исследований, (4) Санкт-Петербургский институт машиностроения

Введение

Магнитное сжатие сильноизлучающих плазменных лайнеров в мощных электрических генераторах позволяет получить импульсы теплового излучения высокой

интенсивности - 10-10 терраватт с длительностью 5-10 нс, что дает возможность осуществить инициирование термоядерной мишени в различных схемах, например, таких, как двойной лайнер (ДЛ) [1, 2], Z-pinch, vacuum hohlraum, dynamic hohlraum, double-ended hohlraum [3], и других. Для исследований и инициирования зажигания рентгеновских мишеней на основе относительно дешевой и значительно продвинутой технике Pulsed Power была выдвинута и разработана концепция ДЛ [1]. В этой концепции рассматривается система, которая состоит из двух соосных лайнеров - один внутри другого. В полости на оси располагается мишень. Ускоренный давлением магнитного поля внешний лайнер сталкивается с внутренним лайнером. В результате высокоскоростного удара в плазме внутреннего лайнера возбуждается сильная ударная волна и происходит частичная конверсия кинетической энергии в рентгеновское излучение, которое проникает в полость внутреннего лайнера и облучает мишень, сжимая её. Внешний лайнер помимо функции драйвера кинетической энергии выполняет роль термоса , препятствуя выходу энергии излучения из полости в момент удара за счет своей достаточно большой оптической толщины, при этом создается дополнительное увеличение интенсивности излучения, падающего на мишень. За свойство внешнего лайнера удерживать энергию излучения в научной литературе схема генерации излучения при соударении лайнеров получила также название dynamic hohlraum [3]. Различие в схемах ДЛ [1,2] и dynamic



hohlraum [3] состоит лишь в том, что в концепции [1] внутренний лайнер содержит добавку материала с большим атомным номером, в то время как в [3,4] внутренний лайнер представляет собой оболочку или сплошной цилиндр из материала с малым атомным номером .

При выполнении условий оптимальности параметров для существующего генератора Z [5] экспозиции мишени недостаточно для зажигания мишени. Однако такой генератор может рассматриваться как предварительный для сжатия и преднагрева основной массы топлива, а само зажигание осуществляется короткоимпульсным лазером по схеме быстрого поджига. Таким образом существенно снижаются требования к мощности основного драйвера, сжимающего мишень. Высокой интенсивности горения можно добиться при меньших суммарных затратах на сжатие и поджиг, так как стоимость электрического генератора более, чем на порядки меньше стоимости мощного лазера, осуществляющего сжатие в стандартной схеме лазерного термоядерного синтеза (ЛТС).

При предварительном сжатии дейтериевой капсулы с помощью основного драйвера в схеме Fast Ignition (FI) [6] требуется достижение столь же высоких плотностей, как и при обычном подходе, но с существенно более низкой температурой. Поджиг мишени осуществляется дополнительным сверхкоротким лазерным импульсом. Предполагается, что механизм конверсии лазерной энергии в энергию образующихся быстрых частиц достаточно эффективен [7], чтобы сформировать в мишени сравнительно небольшую высокотемпературную область - игнитор, являющуюся источником самоподдерживающейся волны термоядерного горения, которая, распространяясь из игнитора, вовлекает в горение остальную часть мишени.

При разработке различных схем быстрого поджига в качестве источника формирования игнитора обычно рассматривался сфокусированный поток быстрых электронов [6-8]. Однако исследования электронного транспорта сквозь сжатую оболочку ТЯ мишени выявили ряд трудностей, мешающих использованию электронного пучка для доставки энергии горючему. Ток пучка, необходимый для поджига, превышает альвеновский ток в плазме. В результате возникающего противотока развиваются неустойчивости и происходит филаментация исходного пучка [8]. Подводимая энергия при этом может рассеяться в плазменной короне мишени не доходя до ТЯ горючего. В то же время быстрые электроны за счёт электростатического взаимодействия ускоряют ионы лазерной мишени выполненной в виде фольги [20-22]. Такое ускорение наиболее эффективно для лёгких ионов внедрённых в фольгу. Коэффициент конверсии в энергию



протонов при этом достаточно большой и по данным экспериментальной работы [16] достигает 10%.

Поэтому более перспективным представляется использование ионного пучка для доставки необходимой для поджига энергии [21]. Ионный пучок в отличие от электронного компенсирован по заряду и траектории ионов более прямолинейны. Характерная энергия ионов достаточна для эффективной передачи энергии ТЯ горючему. Небольшая расходимость ионного пучка и его малый поперечный размер позволяют генерировать ионы с помощью специальной мишени, расположенной в непосредственной близости от ТЯ мишени. Наиболее оптимальное место для размещения лазерной мишени -вблизи торца внутреннего лайнера, поскольку в этом случае отсутствуют препятствия для подвода лазерной энергии к мишени. Геометрическое расположение отдельных элементов подобной схемы быстрого поджига приведено на рисунке 1.


Вышесказанное делает актуальным подбор оптимальных мишеней для быстрого поджига и расчёт параметров игнитора вместе с соответствующим ему лазером. Изложение в настоящей работе построено следующим образом. В 1 параграфе оценивается интенсивность сжимающего рентгеновского излучения в схеме двойного лайнера. Во втором - с помощью простой теории оцениваются параметры (температура и плотность) мишени, сжатой тепловым рентгеновским излучением. Подбирается наиболее оптимальная для поджига мишень. Оценки подтверждаются данными численного моделирования. В 3 параграфе рассчитывается пробег быстрого иона в сжатой мишени и определяется диапазон энергий иона, соответствующий максимальному энерговкладу в область мишени, занятую горючим. Здесь же оценивается полное число ионов, необходимое для вложения в мишень заданной энергии. В 4-м параграфе обсуждаются параметры лазера, необходимого для получения такого числа ионов. В 5-м параграфе рассматриваются проблемы транспорта ионного пучка в вакууме и в короне термоядерной



мишени. Наконец в последнем 6-м параграфе моделируется процесс горения мишени, вычисляется коэффициент усиления и степень выгорания топлива при лазерном поджиге.

1. Генерация и термализация рентгеновского излучения двойного

лайнера

В схеме ДЛ внешний лайнер сжимается давлением магнитного поля, протекающего по нему тока. Величина набранной кинетической энергии зависит от массы, размеров и распределения плотности вещества лайнера и для параметров, согласованных с генератором, зависит главным образом от амплитуды тока (J0) и степени радиального сжатия (R0/r):

M,V,2 Jnh гл 1Ч

ln(Ro/r), (1.1)

2 2c2

(где Mi, h, Vl - соответственно, масса, длина и скорость лайнера). Степень радиального сжатия ограничена развитием неустойчивостей и обычно не превышает десятикратного.

Тепловое излучение, облучающее мишень, возникает в результате возбуждения сверхкритической ударной волны в веществе внутреннего лайнера при высокоскоростном ударе внешнего лайнера о внутренний. Излучение проникает в полость внутреннего лайнера. Внешний лайнер при этом экранирует излучение, препятствуя выходу его наружу. Для эффективной конверсии кинетической энергии лайнера в излучение и экранировки излучения в полости внешний лайнер должен быть изготовлен из веществ с атомным номером Z >> 1. Ускорение такого лайнера сопровождается излучением диссипируемой в плазме лайнера энергии так, что температура плазмы относительно низка и тепловое давление в такой плазме многозарядных ионов оказывается существенно меньше давления магнитного поля. Этим обусловлено, то, что в процессе ускорения

основная масса лайнера имеет характерную толщину порядка скин-слоя 8 = д/ c21/ 2пс

(t - время сжатия, С - проводимость плазмы). Для импульса тока мегаамперного диапазона

со временем нарастания порядка 100нс толщина скин-слоя около 1мм.

За счет излучения внешнего лайнера к моменту соударения внутренний лайнер испаряется и разлетается со скоростью порядка скорости звука, т.е. характерная толщина внутреннего лайнера для импульса тока длительностью 100нс составит Л 1мм. Поэтому торможение внешнего лайнера и конверсия его кинетической энергии в излучение происходит в разряженной плазме внутреннего лайнера и характерное время соударения лайнеров для МА тока, при скорости Vi 5-107см/с, составляет т&(Л+ 8)/У1=5нс. Давление



магнитного поля вызывает сильную ударную волну. Сильно излучающая ударная волна во внутреннем лайнере распространяется с переменной во времени скоростью:

D = ]\ (1.2)

где pin - плотность внутреннего лайнера перед фронтом ударной волны jUout - масса внешнего лайнера на единицу площади.

Для осуществления режима сильноизлучающей ударной волны необходимо, чтобы в плазме внутреннего лайнера было достаточное количество многозарядных ионов Z>>1. В ударной волне, распространяющейся по плазме многозарядных ионов, конверсия гидродинамической энергии в излучение является результатом цепи последовательных процессов. За счет механизма ионной вязкости кинетическая энергия направленного движения переходит в тепловую энергию ионов. В результате ион-электронных столкновений нагреваются электроны плазмы. Одновременно идет дальнейшеая ионизация плазмы и происходит возбуждение ионных состояний, которые девозбуждаются за счет высвечивания или тушения электронным ударом.

Для эффективного переизлучения тепловой энергии необходимо, чтобы скорость возбуждения ионов была не меньше скорости ион-электронного обмена энергий при упругих столкновениях. Это условие накладывает ограничения на величину силы осциллятора основных переходов ионов, которые могут быть выполнены при скорости лайнера Vl &5-107см/с для материалов с достаточно большим атомным номером Z l. Однако вместе с этим плазма должна быть достаточно прозрачна для теплового излучения, чтобы пропустить его в полость, где расположена мишень, т.е. длина пробега тепловых рентгеновских квантов (Росселандов пробег) в плазме внутреннего лайнера при данной его массе должна быть наибольшей. Поэтому внутренний лайнер должен быть выполнен из смеси легких и тяжелых атомов [10].

Внешний лайнер при ударе помимо функции драйвера кинетической энергии должен осуществлять функцию термоса , препятствуя выходу излучения наружу, т.е. иметь максимальную поглощающую способность при данной массе лайнера для спектра излучения внутренней плазмы для термализации излучения и переизлучения его обратно, т. е. состав вещества внутреннего и внешнего лайнеров должен быть согласованным [10]. В этом случае может быть осуществлен режим усиления интенсивности излучения, падающего на мишень.



I xin 1 xout

flR°ut +(x щ^)) (1.3)

2 lRin lRin rin /

где rin rout - радиусы внутреннего и внешнего лайнеров, lRin; lRout - средние длины пробега тепловых квантов в плазме внешнего лайнера, усредненные по Росселанду, при температурах внутри и снаружи, соответственно, а 1. Из закона сохранения потока энергии следует, что поток излучения наружу примерно равен потоку энергии, вносимому ударной волной, т.е. Ixout 4/3pinD3.

Из (1.3) вытекает важное следствие, что с увеличением тока генератора за счет возрастания массы внешнего лайнера пропорционально квадрату тока, как следует из (1.1), и потока кинетической энергии, также пропорционального квадрату тока, (для достаточно большой массы лайнера так, что uout/lR 1) интенсивность теплового излучения в полости растет по закону Ixin о J4.

При ударе основная часть кинетической энергии внешнего лайнера (60-70%) переходит в излучение. После удара оба лайнера продолжают сжиматься по инерции, несколько ускоряясь под действием давления магнитного поля. За счет большой массы

движущегося вещества его скорость не превышает V=2- 10 см/с. Через время t0 = rin/Vi

оболочки схлопываются к оси. Абляционное ускорение оболочки ТЯ мишени до скорости

2-3- 10 см/с должно успеть произойти за время, меньшее t0, поэтому необходимо согласование мишени с двойной лайнерной системой.

2. Сжатие и преднагрев DT топлива тепловым рентгеновским

излучением лайнера

Рассмотрим действие теплового рентгеновского излучения на ТЯ мишень. Одним из основных показателей эффективности термоядерного горения является коэффициент усиления мишени G = Етя /Е0, где Етя - ТЯ энергия, выделившаяся до разлёта плазмы, E0 -внутренняя, тепловая энергия (3NT/2) дейтериевой плазмы в момент максимального сжатия. Величина G определяет, очевидно, к.п.д. процесса горения, её мы и будем рассчитывать в последующих параграфах.

В ИТС критерием зажигания горючего, как известно [19], является достижение

Ниже мы приводим выражение для соотношения интенсивностей излучения в полости Ixin и снаружи Ixout [11]:



G 002цh fJJ {Г^} > 1 (2.1)

Преимуществом введения параметра G (по сравнению, например, с нейтронным или энергетическим выходом) является независимость этой величины от абсолютных значений массы топлива и оболочки а также возможность сравнивать эффективность горения для совершенно различных экспериментальных установок. Вместе с тем G, очевидно не характеризует эффективность всего комплекса в целом, так как помимо Етя , E0 на сжатие мишени за время t тратится энергия (на единицу площади) падающего теплового излучения вт = taT4, а на поджиг - Eig. Коэффициент преобразования энергии падающего

теплового излучения ET= 4nr* BT во внутреннюю энергию мишени Е0 называется коэффициентом абляции и определяется формулой [9]:

ц ln2 Д

1абл e

xpCs

{ 4taT4 J

(2.2)

1 -ц

где a - постоянная Стефана-Больцмана, lx = (A/Zp[ г/см3])(T/Ry)x [см] - росселандов пробег, Ax 2.2-10-6 г/см2 for Au оболочки, А, Z - атомный вес и средний заряд ионов плазмы оболочки, cS = 2T / mi - изотермическая скорость звука в оболочке с текущей массой M и начальной массой M0, ц = M/M0. Max r/h < 0.1. Оценка в области максимума

скорости реакции приводит к соотношению т1х >0.15цh 1 --\ (МДж/см2). Для

коэффициента преобразования энергии rh 6% [11] и сжатия без неустойчивости I - I 10,

{ г

получим критерий на величину экспозиции мишени вх = т1х > 2.5 (МДж/см2).

pr>0.3-=-1 г/см2 при температуре плазмы T>5KeV, при этом коэффициент умножения внутренней энергии мишени за счет выделившейся термоядерной энергии G >1. В условиях инициирования мишени тепловым рентгеновским излучением критерий G >1 удобно представить, записав энергию плазмы мишени через интенсивность Ix излучения облучающего мишень за характерное время т и преобразующуюся в тепловую энергию плазмы с коэффициентом щ, т.е. энергия плазмы вp = цhт1х4пг 2, где r* - эффективный

радиус мишени, на котором происходит поглощение энергии излучения. Тогда критерий G >1, записанный через величины энерговыделения D-T - реакции Sdt, скорость реакции <oDTu>, скорость звука в сжатой до радиуса r плазме cS = 2T/mi , примет вид [1]:

В DT Y Ц 2 3 <СТ DT U>



Учитывая к.п.д. драйвера, осуществляющего сжатие (к.п.д. схемы двойного лайнера много больше, чем схемы сжатия лазером), можно утверждать, что процесс горения мишени в целом энергетически выгоден при G > 200. В настоящее время экспериментальная ситуация ещё далека до получения таких значений коэффициента усиления, поэтому различные методы увеличения G чрезвычайно актуальны.

Перейдём к исследованию процесса сжатия мишени тепловым излучением. Оценки температуры рентгеновского излучения, соответствующие потоку (1.3) для Z-генератора в зависимости от длительности импульса дают величину Т/f =250-300 эВ. При облучении мишени излучением с такой температурой внешняя часть оболочки быстро приходит в состояние близкое к равновесному с полем излучения. Внутрь оболочки распространяется волна лучистой теплопроводности. Нагрев и абляция вещества оболочки в волне приводят к ускорению внутренней части оболочки. В простейшем приближении постоянной скорости абляции скорость V внутренней части оболочки с массой M и начальной массой M0 описывается формулой [19]:

V = а csf 1п(1/ц) 2 csf , (2.2а)

где а < 2, csf =,J2Tf / mx .

Движущаяся оболочка сжимает термоядерную плазму. Под действием движущейся оболочки в дейтерии инициируется ударная волна (УВ). Если пренебречь потерями на ионизацию, излучение из плазмы дейтерия, и потерями, связанными с электронной теплопроводностью на оболочку, то температуру плазмы DT за фронтом УВ можно оценить, как известно, из соотношения [13]:

m V2

Te m (2.3)

Для V=107 см/с температура Te0 составляет 35 эВ. Энергия Ферми для данной мишени -3.6 эВ. Таким образом, после прохождения ударной волны дейтериево-тритиевый лед превращается в невырожденную плазму с уравнением состояния близким к уравнению состояния идеального газа. При дальнейшем сжатии температура плазмы нарастает по закону, близкому к адиабатическому, до тех пор, пока потери за счет электронной теплопроводности на оболочку, которая остается достаточно холодной, не будут сравнимы с работой по сжатию плазмы оболочкой.

Для описания этого процесса и оценок параметров рассмотрим модель [19], в которой DT плазма массой mT, образующая шар с текущим радиусом R имеет плотность:



4nR2(pV + q)

2A mp dt

M- = 3.2 10-1-PT4nR2, (2.4)

dt Amp

где p = Z +1-3m3T-Te и q = -KVTe = K0Te5/2 -, ( к0 = 1.44 10-7 / Zme), М - масса летящей A4nR3mp R

внутрь части оболочки в г, температура здесь измеряется в электронвольтах, скорость в см/с, радиус в см. Из системы (2.4) получается следующая оценка радиуса и температуры в момент максимального сжатия по адиабатическому закону: Минимальный радиус, до которого может быть сжато топливо

Максимальная температура при этом совпадает по времени с моментом максимального сжатия и составляет:

T = 1+1. (2.6)

max р V /

Безразмерные величины в (2.5, 2.6) введены как I = - T =-- (R0 и Т0 -

начальные радиус и температура топлива), Р = 5.75 1012 mT Te° . Отметим, что параметр р

AM V02

представляет собой отношение тепловой энергии плазмы топлива к кинетической энергии оболочки в начальный момент времени. Решения (2.5, 2.6) могут быть использованы для приближенного описания начальной стадии сжатия топлива, когда роль процессов теплопроводности относительно мала. В общем случае проинтегрировать аналитически уравнения (2.4) по всей области изменения переменных не удается, поэтому в дальнейшем кроме модельных оценок мы рассмотрим также более строгое численное моделирование сжатия мишени, выбранной с помощью аналитической модели.

При выполнении условий оптимальности параметров для существующего генератора Z [5] в Sandia National Laboratory с амплитудой тока I=20MA и скоростью

р= 3гпт . Система уравнений, описывающая сжатие плазменного шара имеет вид: 4nR3

3Z +1 mT dTe



нарастания 100нс кинетическая энергия внешнего драйвера, следующая из (1.1) при длине лайнера 10 см будет 0.8 мДж, эффективные радиусы внутреннего и внешнего лайнеров в момент удара составляют пп=1.6мм, г01п=3.2мм, а интенсивность излучения в полости Ixin=330 TW/cm2 и длительности импульса т = 5нс.

Потоку излучения Ixin соответствует температура равновесного теплового излучения (Ixin =oT4) 200 эВ. Экспозиция мишени таким образом составляет Е=1.65 МДж/см2, чего недостаточно для зажигания мишени. Однако такой генератор может рассматриваться как предварительный для сжатия и преднагрева основной массы топлива, специально выбранной мишени

В качестве таковой рассмотрим сферическую оболочку из Fe радиусом 1 мм и толщиной 25 мкм (масса оболочки 2.47-10-3 г) заполненную слоем дейтериевого льда толщиной 67j,m и плотностью 0.213 г/см3 и газообразным дейтерием плотностью 5.5-10-4 г/см3. При этом масса топлива в сжатой мишени mT=9.22-10-5 г.

Эти параметры выбирались из следующих соображений: Радиус мишени должен быть очевидно меньше 1.6 мм. Поскольку коэффициент сжатия мишени по радиусу без

3 r*

развития неустойчивости - 10, масса топлива должна быть такой, чтобы длина

2 r )

свободного пробега протона с энергией 10-20 мэВ (такие энергии характерны для лазерного поджига) в сжатой дейтериевой плазме с температурой единицы кэВ была ~ 10 мкм. Это даёт величину ~ 10-4 г. Масса оболочки должна быть такой, чтобы кинетической энергии оболочки MV2/2 было достаточно для того чтобы внутренняя тепловая энергия сжатого топлива 3(Z+1)NT/2 соответствовала температуре единицы кэВ. При выбранных параметрах мишени (в дальнейшем они будут использованы и при численном моделировании) и Tf=200 кэв скорость звука cs в оболочке составит 8-106 см/с. Оценка начальной скорости оболочки за счёт абляции (когда M=0.9M0) под действием теплового рентгена по формуле (2.2а) приводит к V0~ 107 см/с. Температура плазмы за фронтом ударной волны (2.3) в начале процесса сжатия составляет Te0=35 эВ. Оценивая параметр в, видим, что: Р^0.009. Минимальный радиус в адиабатическом приближении составляет по формуле (2.5): Rmin*98 мкм, максимальная температура топлива из (2.6) ,3.5 кэВ. Время схлопывавия мишени составляет примерно 5 нс.

Приведённые параметры сжатой мишени носят оценочный характер. Так например, очевидно, что в конце процесса сжатия теплопроводность снизит температуру внутренней





1 2 3
© 2017 РубинГудс.
Копирование запрещено.