Популярное

Мифы о звукоизоляции



Как построить дом из пеноблоков



Как построить лестницы на садовом участке



Подбираем краску для ремонта



Каркасные дома из дерева


Главная » Математическое моделирование

1 2 3

рассматривая одномерную, сферически симметричную модель вместо трёхмерной задачи.

Математическая модель ТЯ горения неоднородной сферически симметричной плазмы описывается системой уравнений непрерывности, движения, энергообмена, и состояния плазмы совместно с уравнениями кинетики быстрых ТЯ частиц [18]. Для описания гидро- и термодинамики используется приближение одножидкостной двухтемпературной (Те,Т^ плазмы с учетом электронной и ионной теплопроводности и электрон-ионного энергообмена. в приближении идеального газа. Схема совместного решения уравнений гидродинамики и кинетики применяется в модифицированном пакете программ ТЕРА, используемом в настоящем расчёте. Код ТЕРА предназначен для моделирования динамики термоядерного горения сферической мишени на основе самосогласованного решения кинетических уравнений для нетепловых частиц методом Монте-Карло (МК) и уравнений гидродинамики плазмы на любой стадии эволюции мишени от начала ТЯ горения и до разлета. Код ТЕРА оперирует в едином алгоритме с частицами и фотонами. Распределение концентраций этих частиц в мишени задается в качестве исходных параметров. Код ТЕРА моделирует первичные и вторичные ТЯ реакции. Первичные быстрые частицы являются продуктами ТЯ реакций между ионами плазы в условиях локального термодинамического равновесия. При движении в мишени быстрые ионы могут вступать во вторичные ТЯ реакции, нейтроны - упруго рассеиваться с образованием высокоэнергетичных ядер отдачи, которые в свою очередь могут давать ТЯ частицы более высоких поколений. Фотоны теплового излучения плазмы испытывают тормозное поглощение и Комптоновское рассеяние. В отсутствие магнитных полей траектории быстрых ионов являются прямолинейными, а при наличии полей, моделируются в виде участков скручивающихся спиралей.

Результаты расчётов представлены на следующих графиках:

На Рис.3 (кривая, помеченная треугольниками) показан график зависимости коэффициента усиления рассматриваемой мишени от энергии поджига. Из этого графика видно, что для получения коэффициента усиления порядка нескольких единиц (4-6) необходима энергия поджига 3-4 кДж. Соответственно энергия лазера ~20-27 кДж. Значение E0 в этом случае ~ 16 кДж. Напомним, что энергия импульса теплового рентгена, сжимающего мишень, составляла 213 кДж. Здесь же приведены результаты расчётов для более горячей и менее плотной мишени (кривая, помеченная кружками). Центральная зона такой мишени имела радиус 16j,m, плотность 53,1 г/см3 и температуру DT =4,85 кэВ. Плотная DT плазма снаружи центральной зоны сжата от 60,6 г/см3 до 86,5 г/см3 с



температурой от 3,7 до 2,5 кэВ, радиус DT топлива составляет в максимуме сжатия 47jm. Таким образом, температура в центральной зоне была повышена примерно в два раза, а плотность уменьшена в три раза по сравнению с оптимальной мишенью. Как известно [17], уменьшение плотности горючего приводит к снижению ТЯ выхода при постоянной температуре. Видно, что изменение оптимальных параметров, хотя и приводит к

50 -л


0 2 4 6

небольшому повышению коэффициента усиления при малых значениях энергии поджига в дальнейшем (в рабочей области энергий) приводит к снижению коэффициента усиления и уменьшению эффективности поджига.

Рис.3 Коэффициент усиления термоядерной мишени G как функция энергии поджига E для оптимальных параметров мишени (треугольники) и неоптимальных (кружки). Неоптимальная мишень имела более высокую температуру и более низкую плотность.

При численном моделировании также было установлено, что уменьшение размера области игнитора (при сохранении Eig) не увеличивает эффективность горения. Как показывают расчеты временного развития процесса поджига при выделении в центре мишени энергии 4.5 кДж, процесс горения и выравнивания температуры по радиусу занимает 70-80 пс, коэффициент усиления за это время нарастает до своего предельного значения - 5.98 (см. Рис.3). На Рис.4 показано распространение волны термоядерного горения из центральной области (области поджига) к внешнему краю мишени. Интенсивность горения определяется числом актов реакции в единице объёма мишени в единицу времени (ось ординат). Хорошо видно, что горение начинается в области поджига (области энерговыделения ионов), фронт горения распространяется по радиусу, сохраняя свою крутизну. Контраст в скоростях реакций в горящей и не горящей области составляет



3-4 порядка.

1.В-37 1.В-36

о

<? 1В-35

о

о

с с

1В34 1.Бь33 1.Бь32 1.В31


20 40

г,мкм

Рис.4 Радиальное распределение скорости термоядерной реакции (число актов реакции в секунду в 1 см3) в моменты времени t2 = 3.2 10-3 нс; t3 = 1.38 10-2 нс; t4 = 7.05 10-2 нс.

7. Заключение

Таким образом, лазерный поджиг позволяет получить коэффициенты усиления превышающие единицу, в тех случаях, когда температура мишени мала для самовозгорания. Так для мишени с pR *4г/см2, оптимизированной для горения без применения игнитора выделение энергии составляет Етя=48 кДж, выгорание топлива - 2%. Зажигания детонационной волны термоядерого горения при данной плотности не происходит. Замена мишени на оптимальную для лазерного поджига (масса топлива больше) приводит к тому, что при использовании игнитора с энергией ~ 5 кДж (для этого необходим лазер с энергией импульса ~ 33 кДж) в мишени возникает волна термоядерного горения, коэффициент усиления достигает ~ 16, выделяется ~ 273 кДж ТЯ энергии. Таким образом использование игнитора на данной установке энергетически выгодно. При рассмотреных параметрах степень выгорания мишеней остаётся очень низкой, как с поджигом, так и без него и энерговыделение не компенсирует затраты энергии на сжатие мишени. Для того, чтобы энерговыделение превышало ~ 2 мДж электрической энергии, затраченной на создание оптимальной ДЛ плазмы необходим коэффициент усиления ~ 120. Энергия поджига составит при этом ~ 10 кДж, что потребует применения



многопучковой лазерной системы с суммарной энергией импульса ~ 70 кДж, аналогичной приведённой на рис.1.

Работа поддержана грантами Минобразования РФ Термоядерные и ядерные реакторы - 2001 .и UR.03.01.021

Список литературы

1. Захаров С.В., Смирнов В.П., Гасилов А.В. и др., Препринт ИАЭ, 4587/6. Москва,1988.

2. Zakharov S.V., Smirnov V.P., Grabovskii E.V. et al. Proc. of the I.A.E.A Technical Commitee Meeting on Drivers for ICF, Paris, France., 395, 1995.

3. Matzen M.K. Phys. Plasmas, 4, 1519, 1997.

4. Hammer J.H., De Groot J.S., Toor A. et al. ICF Annual Report. LLNL, UCRL-LR-105821-

97, 86, 1997.

5. Springer P.T., Wong K.L., Iglesias C.A. et al., J. Quant. Spectrosc. Radiat. Transfer, 58, 927, 1997, Spielman R.B., Breeze S.F., Deeney C. et al. Proc. 11 Intern. Conf. on High Power Partical Beams, (BEAMS96). Prague,Czech Republic, June 10-14., V.1, P.150, 1996

6. Tabak M., Hammer J., Glinsky M.E. et al., Phys. Plasmas, v.1, p.1624, 1994.

7. Wilks S.C., Kruer W.L., Tabak M.et al., Phys. Rev. Lett., v.69, p.1833, 1992.

8. Pukhov A., Meyer-ter-Vehn J., Phys. Rev. Lett., v.79, p.2686, 1997, ibid v.76, 3995, 1996.

9. Евсеев Г.А., Захаров С.В., Лисицын А.Г., Маслянкин В.И.. Препринт ИАЭ-5303/6. Москва. 1991.

10. Zakharov S.V.. Bull. Am. Phys. Soc. 44(7), 103, 1999.

11. Захаров С.В., Лисицын А.Г., Евсеев Г. А., Маслянкин В.И.. Препринт ИАЭ-551/6.

Москва. 1993.

12. Duderstadt J.J., Moses G.A. Inertial Confinement Fusion, J.Wiley, NY, 1982.

13. Zeldovich Ya.B., Raizer Yu.P.. Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena. Academic Press, New York, 1966.

14. Волосевич П.П. и др. Препринт KIAM, 48. Москва,1987.

15. Электродинамика плазмы. под ред. А.И. Ахиезера, М: Наука, 1974.

16. Key M.H., Cable M.D., Cowan T.E.et al., Phys. of Plasmas v.5, p.1966, 1998.

17. Atzeny S., Physics of Plasmas, v.6, p.3316, 1999. Piriz A., Sanchez M. Phys. Plasma, v.5,

p.4373, 1998.

18. Andreev A., Ilin D., Levkovskii A. et al., ZhETF, v.92, p.69, 2001.

19. Andreev A.A., Mak A.A., Solovyev N.A. An introduction to hot laser plasma physics, (V.233



in Horizons in World Physics) Nova Sci. Publ., Inc., 163 p., 2000.

20. Pukhov A., Phys. Rev. Lett., v.86, p.3562, 2001.

21. Roth M., Cowan T.E., Key M.N.et al., PRL, v.86, no.3, p.436, 2001.

22. Wilks S.C., Langdon A.B., Cowan T.E.et al., Physics of Plasmas, v.8, p.542, 2001.

23. .Andreev A.A, Platonov K.Yu. et al., Proceedings of SPIE, v.?, p.?, 2000.

24. Hatchet S.P., Brown C.G., Cowan T.E.et al., Physics of Plasmas, v.7, p.2078, 2000.

25. Wei Yu, Bychenkov V., Sentoku Y.et al., PRL, v.85, p.570, 2000.

26. Gibbon P. and Foerster E. Plasma Phys. Control. Fusion, v.38, p.769, 1996.

27. Gurevich A.B, Mescherkin A.P. ZhETF, v.80, p.1810, 1981.

28. Maksimchuk A., Gu S., Flippo K.et al., PRL, v.84, p.4108, 2000.

29. Clark E.L., Krushelnick K., Davies J.et al., PRL, v.84, p.670, 2000.

30. Мешков И.Н., Транспортировка пучков заряженных частиц , Новосибирск, изд. Наука, 1991.

31. .Krushelnick K, Clark E.L., Davies J.et al., Phys. Plasmas, Vol. 7, No. 5, 2000.

32. Wilks S.C.et al., Phys. Plasmas, Vol. 8, No. 2, p. 546, 2001.





1 2 3
© 2024 РубинГудс.
Копирование запрещено.