![]() |
![]() |
![]() |
![]() |
![]() Мифы о звукоизоляции ![]() Как построить дом из пеноблоков ![]() Как построить лестницы на садовом участке ![]() Подбираем краску для ремонта ![]() Каркасные дома из дерева |
Главная » Исследование поля 1 2 Исследование поля уходящего излучения Земли с помощью сканирующего радиометра радиационного баланса на российских спутниках серии Метеор и Ресурс В.А. Головко (golovko@planet.iitp.ru )*, Л.А. Пахомов**, А.Б. Успенский* * НИЦ Планета , Росгидромет ** Научный Центр оперативного мониторинга Земли - филиал ФГУП Центр космических наблюдений , Росавиакосмос Введение Радиационный баланс Земли (РБЗ) на верхней границе атмосферы (ВГА), количественно характеризующий обмен энергией между планетой Земля и космосом, является одним из ключевых параметров в исследовании климата. Пространственно-временное распределение компонентов РБЗ на уровне ВГА может служить основой для определения потоков энергии, которые управляют общей циркуляцией атмосферы и океанов, являясь, в то же время, некоторым следствием этой циркуляции. Система атмосфера-земная поверхность поглощает часть приходящего потока прямой солнечной радиации и излучает длинноволновую (ДВ) тепловую радиацию на длинах волн, больших 4,0 мкм. Уходящий ДВ поток варьирует в пределах от 120 до 450 Вт-м- при глобальном среднегодовом значении около 240 Вт-м . Отраженный поток коротковолновой (КВ) солнечной радиации со спектром в области 0,2 - 4,0 мкм, изменяется в диапазоне от 0 до 750 Вт-м- . Годовой цикл глобального среднего РБ на ВГА имеет амплитуду примерно 15 Вт-м с максимальным положительным значением в конце лета в южном полушарии. Близкие к нулевым (но ненулевые) величины среднегодовых средних по всему Земному шару значений РБ (несколько ватт на квадратный метр), полученные по данным измерений, в последнее время являются предметом дискуссий в мировом научном сообществе: следует ли глобальный радиационный дисбаланс считать предвестником важнейших климатических изменений или это следствие погрешностей данных (на этапах измерений и обработки). Достоверность оценок и мониторинга величин РБ в существенной мере определяется точностью и непрерывностью рядов наблюдений. Значительный прогресс в решении задачи получения указанных данных был достигнут в рамках спутниковых экспериментов Nimbus/ERB и ERBE/NASA [10]. Один из важных выводов этих экспериментов состоял в том, что столь масштабные проекты, как долговременный спутниковый мониторинг составляющих РБЗ должны выполняться совместными усилиями Метеослужб и Космических Агентств разных стран. Хорошим примером в этом смысле является сотрудничество с Национальным центром космических исследований Франции (КНЕС) по изучению РБЗ, которое было начато в 1987 г. в рамках Совета Интеркосмос АН СССР. Программа взаимодействия включала совместную разработку сканирующего радиометра радиационного баланса (СРРБ) для оснащения спутников Метеор-3 с целью восполнения возникающего в 90-ые годы пробела в многолетнем ряде данных о РБЗ, собранных НАСА (США). Работы по проекту СРРБ велись совместно специалистами России, Франции и Германии, имея ввиду продолжение космического мониторин- га РБЗ в дополнение к уже полученным данным по проекту ERBE (Earth Radiation Budget Experiment) [10] и в преддверие проекта CERES (Clouds and Earth Radiant Energy System) [44]. Для координации научных исследований в рамках этого проекта была создана Международная научная рабочая группа СРРБ (ISSWG, см. табл.1 в [24]). Первая летная модель СРРБ на российском метеорологическом спутнике Метеор-3№7 (СРРБ/Метеор) была запущена в январе 1994 г. В период ее активной работы с февраля 1994 г. по март 1995 г. удалось собрать большой массив данных и на их основе получить достаточно представительную глобальную информацию о пространственно-временной изменчивости РБ [24]. Данные, полученные в рамках проекта СРРБ, позволили частично заполнить пробелы в измерениях РБЗ в период после окончания функционирования аппаратуры ERBE в 1989 и до начала измерений CERES в 1997 г. Важно было сохранить мониторинг региональной межгодовой изменчивости широкополосных потоков в период (около 10 лет) отсутствия каких-либо других данных широкополосных сканеров. После относительного успеха первой летной модели СРРБ/Метеор было решено запустить вторую летную модель СРРБ на КА Ресурс-01 №4 (СРРБ/Ресурс). При функционировании СРРБ/Ресурс с солнечно-синхронной орбиты исчезло большинство систематических ошибок в данных, присущих данным СРРБ/Метеор и являющихся следствием изменения местного времени наблюдений. К сожалению, из-за преждевременного выхода из строя передатчика, данные СРРБ/Ресурс ограничиваются периодом август 1998 г. - апрель 1999 г. Полученные в рамках проектов СРРБ/Метеор и СРРБ/ Ресурс данные имеют высокое качество и в настоящее время доступны широкому научному сообществу [18]. Цель настоящей публикации - дать краткое описание аппаратуры СРРБ и российско-французского спутникового эксперимента по измерению РБЗ, а также рассмотреть основные задачи этого эксперимента и полученные результаты. Принцип действия, конструкция и основные характеристики СРРБ СРРБ представляет собой 4-канальный радиометр, сканирующий поперек траектории полета с пространственным разрешением (в надире) 60х60 км с высоты 1250 км (высота орбиты КА Метеор-3 N7). Компоновка основных узлов СРРБ и устройство спектральных каналов показано на рис.1. Сектор сканирования составляет 100°, что обеспечивает полосу обзора около 3000 км. В сканирующей головке цилиндрической формы и осью вращения, параллельной направлению полета спутника (см. рис. 1), в главном её сечении соосно установлены четыре радиометра, оси визирования которых ортогональны оси вращения головки. Основные характеристики этих радиометров (каналов) приведены в табл.1. электродвигатель ротор/статор внешний корпус диафрагмы (статор) модулятор [сп.юн m.hiiiiM преобразователь ![]() приемник шлучения Рис.1 Компоновка основных узлов СРРБ (вверху), устройство спектрального канала (внизу слева) и фотография собранного СРРБ с российским блоком бортовой калибровки (внизу справа). Таблица 1. Основные характеристики измерительных каналов СРРБ
Оптические схемы каналов по конструкции полностью идентичны. Входное излучение фокусируется на приемную площадку детектора единственным сферическим зеркалом. Наличие только одной отражающей поверхности позволило получить спектральную характеристику с очень слабой зависимостью от длины волны, а осевая симметрия оптики свела к минимуму влияние поляризации входного потока радиации. Модулятор имеет сферическую форму, вписывающуюся в цилиндрическую форму корпуса сканирующей головки. Важно подчеркнуть, что для радиометров с модуляцией и пироэлектрическим детектором строго выполняется линейность зависимости выходного сигнала от величины энергетической яркости излучения на его входе: Nk = Gk j L(A) Rk (A)dA + Ck + 5Nk, 2 1 где L(A) - спектральная энергетическая яркость, Вт-м -ср ; Rk (А) - спектральная чувствительность к -ого канала; Gk - коэффициент преобразования отсчетов в абсолют- 1 2 ные энергетические единицы-(Вт -м -ср); Ck - смещение, создаваемое, главным образом, внутренним радиационным фоном, а 5Nk - собственный шум детектора и предусилителя. Для привязки Nk к нулевым уровням в ИК области (каналы 3 и 4) используются сигналы, получаемые при визировании космоса , а в области солнечной радиации (каналы 1 и 2) от внутренней черненной поверхности корпуса (кожуха) сканирующего блока. Поэтому время строки сканирования (короткий цикл измерений) включает, помимо времени просмотра сцены на поверхности Земли в секторе ±50° от надира, интервалы визирования указанных нулевых источников. В результате получаются приведенные к нулям сигналы: N* = [Scene] = Nk [Scene] - Nk [Space] = j L(x)Rk (A)dA + 8Nk , где SN*k является суммой шумов при визировании сцены и нулевого источника. Главная цель измерений состоит в получении абсолютных величин (Вт-м -ср ) энерге- тических яркостей отраженной солнечной радиации LSW [Scene~]=j LSW (A)dA и инфра- красного теплового излучения LLW [Scene] = jLLW (A)dA . При этом последняя величина определяется как разность показаний интегрального канала (канала 3), реагирующего на сумму Lw (а) + LLw(а) и коротковолнового (канал 2), оснащенного фильтром (пластина из кварца), выделяющим только компоненту Lw (а) . СРРБ работает как компаратор, сравнивающий сигнал N* [Scene] с сигналом Nk* [Lik ] от некоторого / -ого источника в k-ом канале, интегральная светимость кото- L (а) рого Lk = j Lk (A)dA и спектр l/k (А)= /Л хорошо известны. а L[Scene]== NiwBLk (1) где Rk [l/c] = j l/k(A)dA и Rk [isc] = j lsc(A)dA интегральные относительные чувствительности канала k Lk (А) и Lscene (А) соответственно. Основная концепция оперативной (бортовой) абсолютной калибровки СРРБ была разработана российскими специалистами и технически реализована в циклограмме функционирования и конструкции основного блока калибровки, рабочие образцы которых изготовлялись и поставлялись во Францию для комплектации всех выпущенных моделей СРРБ. Не останавливаясь на детальном описании выбранного принципа калибровки и принятых технических решений, отметим лишь те особенности, которые определяют степень доверия к выходным информационным продуктам LSW и LLW. В данном случае речь идет об алгоритмах и технологии привязки выходных сигналов к абсолютной энергетической шкале и учете влияния взаимодействия функции пропускания канала со спектром излучения визируемой сцены. Как видно из соотношения (1), погрешность привязки к энергетической шкале определяется точностью знания Lk (X) и близостью спектров этих источников к спектрам естественных сцен. Применительно к СРРБ на стадии разработки были рассмотрены три типа источников опорных излучений, см. табл.2 и [1, 8, 9]. Таблица 2. Источники опорных излучений.
Как видно из табл.2, единственным источником, для которого интегральное излучение (при близких к 1 величинах излучательной способности) аналитически описывается через легко контролируемую температуру, является имитатор абсолютно-черного тела (АЧТ). Спектр ИК излучения на верхней границе атмосферы близок к спектру серого тела при некоторой эффективной температуре. Rk \В(Х310К )\ 1+0 002 Расчеты показывают, что отношение kLr -f лежит в пределах 1 0 008 для всех Rk \LLWScene\ возможных сцен (лес + облачность, море +облачность и т.п.). Аналогичная ситуация имеет место и для отраженного солнечного излучения, когда в качестве опорного источника используется диффузный экран, освещаемый прямым солнечным светом. Именно эта идея была заложена в первоначальный проект СРРБ. Однако, для КА Метеор-3 , орбита которого прецессирует относительно направления на Солнце, этот способ оказался малоэффективным. Был найден и реализован метод бортовой калибровки, опирающийся на основной источник в виде АЧТ и промежуточный в виде лампы накаливания. В частности, был создан сдвоенный источник на базе сверхминиатюрных ламп софитного типа с использованием фоконно-волоконных элементов, для которого отношение светимостей LllA) = а остается постоянным в течение всего времени эксплуатации прибора. Соответствующие алгоритмы получения величин LLW и LSW должны иметь вид: N3* \LAWScene] R3 [lBB ] 4 L = J 3 L BB 1 LW~ N3* [BB3 ] R3 [LScene] 1 L = а N2 [Scene] (N3 ]-N3 [l ]) R3 [Ibb ] R2 [[22 ] t4 = N2 [L22 ] N3 [BB3 ] R23 [l23 ]R2 [scene ] Здесь N3on [L23 ]- Nf [L23 ] означает сигнал за счет светимости источника, а не его температуры, N3* [Scene] = N3 [Scene]- AN2 [Scene] = N3* [LLW ], где A 3 23 3 23 т*\л л 1т\л л 1 т.т*Хт л . . N3[LSW]= G3 R3\lSW] = G3 R3(l23) N2 LSW G2 R2 lSW G2 R2 l22 Не останавливаясь на описании способов количественной оценки параметров а, А и соответствующих отношений интегральных чувствительностей, укажем, что исследованию этой метрологической проблемы было уделено значительное внимание, в том числе при проведении предполетной калибровки по Солнцу [31-33] . В обобщенных материалах анализа наземных калибровок [29,30] приведены значения этих констант. Основные задачи космического мониторинга составляющих РБЗ с помощью Изменения РБЗ, в основном, связаны с вариациями характеристик облачного покрова. Разность величин РБЗ при наличии облаков и в условиях некоторой идеальной безоблачной сцены получила название вынуждающее воздействие облаков на радиацию (cloud-radiative forcing) или проще - радиационное влияние облачности (РВО). Оптически толстые облака сильнее отражают коротковолновое излучение, по сравнению с более темными объектами на земной поверхности при отсутствии облаков. При этом меньше нагреваются земная поверхность и атмосфера, так что в климатическом плане увеличение количества оптически толстых облаков должно приводить к похолоданию. Интенсивность собственного теплового излучения облаков изменяется в зависимости от их температуры и оптической толщины, которая естественным образом связана с общей толщиной облачной системы. Температура верхней границы облаков почти всегда ниже температуры земной поверхности. Холодная верхняя граница облака уменьшает поток ДВ излучения, формируемого более теплой подстилающей поверхностью, т.е. энергия захватывается облачной системой, не давая тепловому излучению уходить непосредственно в космос, как это происходит при безоблачных условиях. Захваченная таким образом энергия увеличивает температуру системы атмосфера - земная поверхность до тех пор, пока уходящее в космос ДВ излучение не обеспечит достижение нового баланса с приходящим солнечным излучением. Процесс захвата , названный парниковым эффектом , в таком упрощенном понимании должен приводить к климатическому нагреванию Земли. В реальности этот процесс значительно сложнее. Например, наличие мощных конвективных облаков не обязательно приводит к существенному нагреванию или выхолаживанию системы вследствие того, что присущий им достаточно большой парниковый эффект уравновешивается высокими значениями альбедо [23]. Кроме того, наличие большого числа обратных связей в климатической системе не позволяет сделать однозначные выводы относительно воздействий перечисленных и других факторов нагревания/охлаждения системы. Одним из таких факторов является сжигание ископаемого топлива и соответствующее высвобождение малых газовых примесей, в частности, парниковых газов (углекислый газ), что может иметь существенные долговременные климатические последствия. Потенциально изменениям климата способствуют также изменения землепользования с усилением распашки почв и сведение лесов (процесс обезлесивания). Эти новые факторы приводят к дополнительным неопределенностям в проблеме предсказуемости изменений климата. Тем не менее, как отмечено выше, основные неопределенности климатических моделей обусловлены эффектом РВО. При этом пока нет однозначного ответа на вопросы: уменьшат или увеличат глобальное потепление повышенные значения балла облачности , в более теплом климате будет больше или меньше облаков в сравнении с современным , как будет воздействовать в целом парниковый эффект атмосферных газов, аэрозоля и облачности на климатическую систему и т.д. [44,45]. Наряду с получением новых знаний по перечисленным вопросам научные приоритеты программы спутникового мониторинга РБЗ включают исследования долговременной изменчивости климата; предсказуемости изменений климата на временных масштабах от отдельных сезонов до межгодовых; влияния природных стихийных бедствий на климат. В плане предсказуемости изменений климата на масштабах от сезонных до межгодовых обычно исследуют ярко выраженные аномалии распределения облачности в тропических широтах Тихого океана. Здесь речь идет об известном явлении Эль-Ниньо/Южное Колебание (ЭНЮК), когда отчетливо видны усиленные процессы глубокой конвекции в восточной части тропических широт Тихого океана, в сравнении с более безоблачными условиями в западной части этих же широт. Одна из задач космического мониторинга с помощью СРРБ (или другой аналогичной аппаратуры) - обнаружение аномалий РБЗ и его ДВ компонента и исследование их связей с упомянутым явлением. Измерения аппаратуры СРРБ и CERES [44] обеспечивают получение глобальных данных, необходимых для оценки радиационных эффектов и воздействий на климат таких природных явлений, как извержения вулканов, наводнения и засухи. Известно, что вулканическая активность имеет существенное влияние на короткопериодные изменения климата вследствие выбросов огромных масс газов в стратосферу при их извержениях с последующим формированием специфических аэрозольных слоев, которые остаются в атмосфере в течение нескольких лет. Данные измерений ERBE позволили зафиксировать аномалии радиационных потоков после извержения вулкана Пинатубо на Филиппинах в 1991 году. Частицы атмосферного аэрозоля изменяли РБ вследствие более значительного отражения от них солнечного излучения в космическое пространство. Было показано, что результирующее выхолаживание атмосферы и земной поверхности привело к понижению средней глобальной температуры на 0.5-1.0°С [29]. Определение РБ земной поверхности по данным аппаратуры СРРБ и CERES способствует пониманию трендов происходящих изменений земных покровов, биологического разнообразия и сельскохозяйственного производства. В частности, оцениваются изменения альбедо поверхности суши и ее ДВ излучения, что является косвенным показателем таких процессов, как опустынивание. С учетом сказанного конкретные цели и задачи программы наблюдения составляющих РБЗ с помощью СРРБ формулируются следующим образом: 1) нахождение изменений в РБ системы земная поверхность-атмосфера ; 2) исследование влияния систематических (суточный и сезонный) циклов в приходящей энергии Солнца на изменения параметров и свойств облаков (их общего количества, высоты, оптической толщины) и соответствующие изменения РБ; 3) уточнение физических моделей облаков и РВО. Данные измерений аппаратуры СРРБ и CERES должны также прояснить ряд вопросов, касающихся использования характеристик облачности в моделях климата, см. [14, 15, 35]. Изменения РВО определяют знак и величину обратной связи радиации и облачности при климатических изменениях, поэтому параметр РВО должен адекватно воспроизводиться в модели общей циркуляции (МОЦ) для текущего климата [13]. Задача адекватной оценки РВО весьма сложна, поскольку этот параметр отражает результирующий эффект многих различных процессов, которые приводят к возникновению облаков с различными радиационными эффектами. Мгновенные и среднемесячные радиационные потоки на ВГА есть результат сложного взаимодействия многих приповерхностных и атмосферных процессов. Вследствие комплексного воздействия на перенос излучения характеристик облачности [19], газового состава и стратификации атмосферы [11, 14, 38] невозможно осуществить прямой мониторинг климатических изменений только специализированными измерениями РБЗ. В настоящее время активно обсуждается вопрос, достаточно ли существующей точности измерений составляющих РБ для мониторинга возможного дисбаланса полных потоков [39, 44]. К примеру, оцененное потепление океана, начиная с 1950 г., соответствует изменению полного среднего потока (на уровне поверхности) порядка 0.3 Вт/м2 [26]. Однако другие крупномасштабные параметры, такие как меридиональное распределение среднезональных потоков радиации, безусловно, могут быть отслежены с помощью наблюдений и экспериментов типа СРРБ. При этом необходимо иметь длительный непрерывный набор данных измерений РБЗ для обнаружения и отбора типичных климатических изменений, включающих сильные явления Эль-Ниньо или Ла-Нина, а также другие значительные возмущения, обусловленные, к примеру, аномальными муссонами или извержениями вулканов. Последнее важно в связи с необходимостью оценки чувствительности МОЦ по отношению к широкому спектру климатических условий. Перечисленные аргументы учитывались при принятии решения о реализации проекта СРРБ. Программа создания СРРБ предусматривала обеспечение широкополосных измерений потоков КВ и ДВ радиации с пространственным разрешением, близким к разрешению приборов ERBE и CERES. Для более надежного детектирования облачных/безоблачных условий в сканирующий радиометр СРРБ были введены два узкополосных канала (№№ 1-4) [12]. Различные применения данных измерений в вспомогательных каналах описаны в [16, 17, 27, 40]. Основные научные результаты Главной задачей миссии долговременного мониторинга составляющих РБЗ является детектирование очень слабых климатических сигналов на фоне естественной внут-ригодовой и межгодовой изменчивости. В связи с этим вопросы адекватной обработки данных и оценки достоверности выходной информации приобретает первостепенное значение. В частности, необходима взаимная калибровка (кросскалибровка) данных различных приборов, на основе которой строится единый временной ряд наблюдений за составляющими РБЗ. Эксперимент по одновременному получению данных СРРБ/Ресурс и CERES-TRMM позволил выполнить взаимную калибровку измерений этих двух типов аппаратуры. Аппаратура CERES включалась в наиболее благоприятные для сравнения с данными СРРБ/Ресурс периоды на нескольких смежных витках. Азимут сканирования аппаратуры CERES при этом разворачивался таким образом, чтобы получить параллельные сканы для двух приборов. Это было необходимо для адекватного сравнения КВ радиации, измерения которой чувствительны к зенитному углу солнца, зенитному углу визирования и относительному азимуту между спутником и солнцем. С использованием кросскалибровки [21] установлено, что радиация в КВ диапазоне спектра согласуется с точностью 1.5% ±1% (95% уровень доверия), а радиация в ДВ диапазоне спектра с точностью 0.7% ±0.1% для дневного времени и 0.5% ±0.1% для ночного времени суток. В КВ диапазоне спектра такая хорошая согласованность свидетельствует о соответствии методик калибровок и спектральной коррекции для двух типов аппаратуры. В ДВ диапазоне спектра хорошая согласованность измерений для дневного и ночного времени суток также подтверждает правильность выбора и оптимальность процедур абсолютных калибровок. В дополнение к этому, хорошее соответствие сравниваемых ночных и дневных данных показывает, что методики получения ДВ радиации из измерений полной и КВ радиации для дневного времени суток как для СРРБ так и для CERES полностью адекватны. В климатических исследованиях важную роль играют среднемесячные региональные (усредненные по географическим ячейкам 2,5°х2,5° по широте и долготе) оценки потоков. Ввиду специфики пространственно-временного распределения измерений составляющих РБЗ к указанным оценкам следует подходить с особой осторожностью. Первоначально нужно максимально точно оценить ошибки определения среднемесячных значений в имеющихся временных выборках. Обработка данных СРРБ [42], подобно ERBE, при расчете среднемесячных значений учитывает пропущенные данные. К примеру, в ДВ диапазоне спектра потоки экстраполируется и интерполируется для всех пропущенных часов. Кроме того, существует две методики вычисления среднемесячных значений. Первая из них или месячные региональные средние по дням (МБМ) учитывает все средние потоки за сутки, а вторая или месячные региональные средние по часам (МНМ) учитывает только те дни, когда было хотя бы одно ДВ измерение. Разница между результатами применения этих методик будет увеличиваться с увеличением количества дней без измерений. Разница между МБМ и МНМ для глобальных и тропических (20° ю.ш. - 20° с.ш.) ДВ потоков составляет соответственно менее чем 0.5 и 1 Вт/м (табл.3). При этом для региональных средних самое большое среднеквадратичное отклонение (СКО) наблюдается для января (12 Вт/м2) и сравнительно малые для февраля, марта 1999 г. Таблица 3. Статистические характеристики разности величин между месячными региональными средними по дням и месячными региональными средними по часам для ДВ потока (Вт/м ).
Межгодовые изменения глобальных среднемесячных потоков в КВ и ДВ диапазоне спектра относительно малы и не имеют заметных трендов. Эти межгодовые (и межаппаратурные ) изменения в основном не превосходят 5 Вт/м для обоих спектральных диапазонов. Согласно [41] наиболее заметной особенностью является сдвиг на 2-3 Вт/м в уходящей ДВ радиации между данными NOAA-9 и NOAA-10 в период эксперимента ERBE. Измерения ERBS/NOAA-10 лучше согласуются с измерениями СРРБ/Метеор и дают более равновесный радиационный баланс. Измерения СРРБ/Ресурс дают немного больший, по сравнению с измерениями другими приборами, уходящий ДВ поток, но этот сдвиг не превышает 1% и находится в пределах ошибок калибровки и обработки данных. В КВ диапазоне спектра сдвиг отраженного потока имеет противоположный знак, но с большей величиной (до 6% между СРРБ/Метеор и СРРБ/Ресурс в январе). Поэтому радиационный баланс на ВГА неплохо согласуется с предыдущими измерениями ERBE и СРРБ/Метеор. Рассмотрим теперь только тропическую зону (20° ю.ш. - 20° с.ш.), где возможны сравнения межгодовой изменчивости по наборам данных ERBE, СРРБ и CERES-TRMM. Это сравнение представлено на рис. 2, где приведены также данные наблюдений NOAA OLR (Outgoing Longwave Radiation, или уходящая длинноволновая радиация, кратко УДР), начатые еще в 1974 г. Интерполированные данные OLR строятся на основе ежедневных (два раза в сутки) измерений ИК-излучения аппаратурой AVHRR спутников серии NOAA в Центре диагностики климата (NOAA-CIRES Climate Diagnostics Center, США). Детали процедуры интерполяции данных OLR изложены в работе [28]. По данным NOAA OLR величины УДР занижены примерно на 10 Вт/м , по сравнению с данными других приборов РБЗ. Отметим также скачок в сентябре 1994 г., соответствующий переходу от ИСЗ NOAA-11 к ИСЗ NOAA-12 [43]. Это обстоятельство иллюстрирует ограничения использования узкоканальных радиометров для оценки долговременных изменений уходящего ДВ потока. Тем не менее, данные NOAA-OLR пригодны и весьма полезны для изучения кратковременных изменений. В частности, данные OLR подтверждают согласованность измерений CERES-TRMM и СРРБ/Ресурс. Сравнительно большая разница (около 5 Вт/м ) между тропическими среднемесячными значениями по данным обоих приборов хорошо согласуется с изменениями NOAA-OLR. Эта разница возможно обусловлена явлением перехода от Эль-Ниньо к Ла-Нина между 1998 и 1999 гг. Напротив, разница между данными ERBE, NOAA-9 и NOAA-10, не 1 2 |
© 2023 РубинГудс.
Копирование запрещено. ![]() |